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Abstract. The temperature dependence of the isotropic Heisenberg exchange integral 
between two magnetic atoms is investigated, assuming first a harmonic and secondly an 
anharmonic dimeric oscillator, which is compared with a crystal by means of the Einstein 
approximation. The exchange constant J is shown to decrease with increasing temperature 
mainly as a result of lattice expansion rather than the vibrational variation in internuclear 
distance. The magnitude of the thermal variation i n J  is sufficient to warrant the correction 
of experimental susceptibility and other bulk magnetic data for its effect. Simple and 
accurate corrections are proposed. As an example, published susceptibility data for the ionic 
ferromagnet Rb,CrCl., is reanalysed, to reveal a temperature-dependent exchange constant, 
in accord with the theory. 

1. Introduction 

The isotropic Heisenberg exchange integral between two magnetic atoms is in general 
a sensitive function of interatomic distance r. Since r normally varies with time owing to 
vibrational motion, the observed exchange constant j for a given vibrational state is a 
time-averaged expectation value of its operatorj. In a bulk magnetic measurement on 
a single crystal, one typically determines a thermally averaged exchange constant J = 
( j ) n  and this may be temperature dependent as a result of the thermal population of 
different vibrational states. Any bulk magnetic quantity which depends upon J will 
reflect its temperature dependence, and so it is important to be able to account for the 
latter in the treatment of experimental data. 

The temperature dependence of J was previously considered by Zaspel and 
Drumheller (1977). In accord with several previous workers (Seehra and Castner 1968, 
Griffiths 1961) they assumed an exchange integral of the form 

j ( x )  = J o  exp( -Ax) (1) 
where x = r - yo, and ro is the equilibrium distance between the two atoms at 0 K. The 
wavefunctions of the harmonic oscillator with an anharmonic term in x 3  derived from 
the Morse potential were calculated by second-order perturbation theory, and matrix 
elements withj were formed. A crystal composed of such binuclear oscillators was then 
considered in the Einstein approximation. Three parameters were required to describe 
the temperature dependence of J :  the bond strength, the reduced mass of the oscillator, 
and A. The latter was calculated for various divalent transition metal to halogen bonds 
by comparing (1) with the exponential part of a Slater-type overlap integral. 
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The approach of Zaspel and Drumheller gave a reasonable description of the tem- 
perature dependence of J as manifest in the electron paramagnetic resonance linewidth 
of a number of transition-metal halides. However, it can be criticised on a number of 
grounds, as demonstrated below. Firstly, it does not reveal the physical origin of the 
temperature dependence, which in fact is mainly a result of thermal expansion, rather 
than of vibrational modulation ofj. Secondly, the expression of the temperature depen- 
dence of J is unnecessarily complicated and, involving three difficult-to-estimate par- 
ameters, is of limited value as a correction to experimental data. 

I consider two alternative approaches to calculating the temperature dependence of 
J .  The first (section 2) assumes harmonic oscillations about a temperature-dependent 
equilibrium position. This is often a good representation of reality, corresponding, for 
example, to the Debye-Waller approximation in crystallography. The displacement x 
in (1) is written as the sum of a thermal expansion term ( x ) ~  and a harmonic fluctuation 
term x ’ ,  and matrix elements are formed with the harmonic oscillator wavefunctions. 
The thermal distribution of vibrational states in the crystal is included by the Einstein 
approximation. Although the latter is unphysical in the sense that it does not admit 
phonon modes, it is appropriate for the present problem since bond length changes will 
be dominated by optic modes which are typically weakly dispersed (Reissland 1973). By 
separating the effects of thermal expansion ( x ) ~  and fluctuations X I ,  the physical origin 
of the temperature dependence of J is clearly revealed. The second approach assumes 
the anharmonic Morse potential and calculates expectation values of the operator (1) 
without the use of perturbation theory, resulting in a very simple expression. Thermal 
averaging is performed in the Einstein approximation as before. The two approaches 
are compared in section 4. In section 5 the necessity and effectiveness of the theory are 
demonstrated through a reanalysis of previously published susceptibility data for the 
ionic ferromagnet Rb2CrC14. 

2. Temperature dependence of J in the harmonic approximation 

The following theory calculates the temperature dependence of the isotropic near- 
neighbour exchange constant J ,  for harmonic oscillations about a temperature-depen- 
dent equilibrium position. The parameter A was calculated by Zaspel and Drumheller 
(1977). 

The harmonic oscillator wavefunctions are (Landau and Lifshitz 1977) 

q n ( x f )  = ( m w / ; n h ) i / 4 ( 2 n / 2 ~ ) - 1  exp(-mwxf2/2h) ~ , ( x ’  - -1 (2) 

where H,  ( ) are the Hermite polynomials. With these wavefunctions, one may make 
matrix elements with the operator 

j T  = J o  exp[-A(x’ + ( 4 T ) I  (3) 

where ( x ) ~  is the displacement of the equilibrium separation from its zero temperature 
value, i.e. ( x ) ~  = 0. Therefore (dropping the subscript T ) ,  

.- - 
exp[ -A(xf + ( x ) ]  exp ( - - myf2) H i  ( xf  J?)dx’ 
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where y = XI-. Completing the square in ( 5 )  gives 
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( 5 )  

The following definite integral has been established (Apelblat 1983): 

jz exp[-(u - ia)'] Hp(u)Hn(u)  du = fi2pp!(i~)p-~LPn-"(2a') p a n  (7) 
--cc 

where LE( ) is an associated Laguerre polynomial: 

which for a = 0 reduces to the Laguerre polynomial 

Comparing (6) with (7) for -ia = vA2h/4mw andp = n gives 

(nljln) = J o  exp(-A(x) + Y/2) LO,(-Y) (10) 

where Y = A2h/2mw (typically about lo-'; see appendix). Using these diagonal matrix 
elements, the binuclear harmonic oscillator may be compared with the crystal using the 
Einstein approximation: 

where Pn is the normalised Boltzmann probability that a state In) occurs. It follows that 

0 

Several reasonable approximations to the above equation follow from the fact that 
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Y e  1. Firstly, as shown in the appendix, this implies that Yn 4 1 for all significant n. 
LO, (- Y) is then given by 

LO,(-Y) = 1 + nY + n(n - 1)Y2/4 + n(n - l)(n - 2)Y3/36 + . . . -1 + nY. (13) 
Equation (12) becomes 

J(T) c- J o  exp ( - A ( x )  + 3 i p,(1+ nu)  
n=O 

where (n) is the Planck occupation number (Kittell976): 

(n) = [exp(ho/kBT) - 11-l. 

J(  T) = J o  exp( -Ab)) [((n) + &)Y + 11 

(15) 

(16) 

Secondly, since Y 4 1, the approximation exp( Y/2) c- 1 + Y/2 is valid and (14) becomes 

but as Y(n) Q 1 (appendix) the first term in square brackets is also much less than unity, 
and so 

J( T) c- J o  exp( -A($). (17) 
The above equation shows that the exchange constant depends only upon the thermal 
expansion to a good approximation. Recalling equation (16), it can be seen that the 
variation inJwith temperature depends upon two factors: a dominant thermal expansion 
term, and a smaller term in Y resulting from oscillations. Whilst the former causes a 
decrease in J( T) with increasing temperature, the latter tends to oppose this effect. This 
would be expected from a consideration of the effect of harmonic oscillations on the 
form (1). Such a distinction between expansion and oscillation factors was anticipated 
by Hutchings et a1 (1968). 

Experiments at fixed temperatures have suggested that J usually depends upon the 
bond length (r) in the manner J a (r)-q(q = 10 (Bloch 1966); q = 12 (De Jongh and 
Block 1975)). Equation (17) may be related to the power-law dependence of J on (r) by 
differentiating 

dJ/d ( x )  = -A J (18) 

6J/J  -A(r)6(r)/(r). (19) 

from which follows (since 6 ( x )  EZ 6(r)) 

Comparing (19) with the derivative of J 0: (r)-q enables us to see that A(r) c- q. Con- 
sidering transition-metal fluorides as an example, typical values of A and (r) are about 
4 x 1O'O m-' and about 4 X lo-'' m, respectively, which gives q = 16. This is in reason- 
able agreement with the typical value of q of about 12 observed experimentally (De 
Jongh and Bloch 1975). 

In the application of (17), the thermal expansion ( x )  is best determined experi- 
mentally. At  high temperature, ( x )  often varies linearly with temperature (Kittel1976), 
and the crystallographic determination of bond lengths at only two temperatures may 
be sufficient to determine the proportionality constant. The only unknown parameter is 
then A,  which may be obtained from the tables of Zaspel and Drumheller (1977), or 
simply estimated as approximately q/(r)  (see above), with q c- 12. 
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3. Temperature dependence of J in an anharmonic approximation 

The following theory makes no distinction between the thermal expansion and the 
oscillation contributions to the temperature dependence of J. The anharmonic Morse 
potential is assumed: 

V(x)  = A[exp(-2ax) - 2exp(-ax)]. (20) 
The unnormalised wavefunctions for a particle in the Morse potential (Landau and 

Lifshitz 1977) are 

v = exp(-E/2) F F ( - n ,  (2s + 11, E )  (21) 

where 

s = G z z & Y # i  

E,, = A[I - (&/V%Z)(n  + t ) ] 2  (22) 
= [ 2 v ' Z G i / a ~ ]  exp(-ax) 

and F is a confluent hypergeometric function. The integration of such functions is 
discussed in appendix f of Landau and Lifshitz (1977). It is convenient, for reasons which 
will become obvious, to consider the integrals v2  dx and .I?= Ev2 dx. Changing the 
variable from x to (dx = -dE/aE) and the limits correspondingly from 0 to a, these 
become 

1, = /-: v2  d x  = -CY-' JOE exp(-E) E2-'P( -n, (2s + l ) ,  E )  dE (23) 

Now the ratio Z2/Z1 is the matrix element (n151n). Considering the standard integral 

J ,  = lom exp(-kz) ,'-IF2( - n ,  y ,  kz) d z  (25) 

with k = 1, z = E and y = 2s + 1, the desired ratio is 

M I  = (nlEln> = J y / J y - I .  (26) 

From the standard recursion relations of the integrals J ,  given by Landau and Lifshitz, 
the following relation is established: 

J ,  = (Y - W y - 1  

(nlEln> = 2s = 2V/2mE,/& = 2[(V%Z//ruh) - (n  + t ) ] .  

(nl exp(-ax)In) = 1 - [/ruh/d\/zmA](n + 3). 

(27) 

(28) 

(29) 

from which 

Since = [ 2 m / / c u h ]  exp(-ax), the expectation value of exp( - a x )  is 
- 

This equation effectively gives the matrix elements of j  (equation (1)), since Zaspel and 
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Drumheller suggested that A = CY. In order to calculate the thermal average of (nljln), 
the energy levels of the Morse potential oscillator (equation (22)) are expanded to O(n): 

E,, -A[(l - oCn/VZZ)2 - 2n(un(l - CY~/%~KZ)/V%Z] (30) 

and compared with those of the harmonic oscillator (E,, = (n  + $)hw)  to give 

nw = 2A(un/d/2mA. (31) - 
Here it has been assumed that &/d2mA Q 1, which may be verified given the typical 
va luesaE4  X 1O1'm-',m = 3 X kgandA = 1.4 X 10-20J(seesection5),whence 
( u n / m  = 0.05. The thermal average of the matrix elements (29) are simply (replac- 
ing CY by A) 

- 
(exp(-Ax)) = 1 - (Ah/d2mA)((n) + 4) (32) 

where (n)  is the Planck occupation number (equation (15)). The temperature depen- 
dence of J is therefore given by 

J(T) =Jo{l - ( A h / ~ ) [ e X p ( 2 A ~ n / d \ / 2 m A k B T )  - I]-'}. (33) 

This equation involves three parameters: the depth A of the vibrational potential well, 
the reduced mass (m) of the oscillator and A. It is valid for weak anharmonicity provided 
that A = CY, an approximation which seems to give reasonable results (Zaspel and 
Drumheller 1977). 

4. Comparison of the two approaches 

The theory of the previous section approximately calculated (exp(-Ax)) in a weakly 
anharmonic potential. However, as shown in section 2, it is valid to neglect fluctuations, 
and so (exp(-Ax)) = exp(-A(x)). Since A(x) will be quite small, exp(-A(x)) can be 
expanded to first order in A(x)  and compared with equation (32) to give the thermal 
expansion 

(x> = ( n / m ) ( ( n )  + h) (34) 

(n)  = [eXp(2AAh/d/2mAk~T) - 11-l. (35) 

( x )  = kBT/2AA (36) 

with 

It is observed that the high-temperature asymptote of (34) is 

which is reasonably consistent with the classical value 3k~T/4AcY, calculated from the 
second and third derivatives of the Morse potential, according to the simple method 
given by Kittel(l976). Furthermore, equation (34) is observed to be of the correct form, 
since the linear thermal expansion coefficient d(x)/d T would be proportional to d(n)/ 
d T  which in turn is proportional to d(Nho(n))/dT, the specific heat Cv. This is 
essentially Gruneisen's relation (Rosenberg 1962). 

It is finally noted that the present theory is only strictly applicable to the case of 
relatively weak coupling (e.g. J Q A), since the exchange energy is not included in the 
intermolecular potential. 
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Table 1. Calculated coefficients in the high-temperature series expansion for the S = 2 
quadratic layer Heisenberg model ferromagnet (Ishikawa and Oguchi 1971). The series is 
defined by equation (38). 

Coefficient a,, a ,  a2 a3 a4 aS a6 

Value 1 16 184 1937.07 18284.3 161563.7 1371769 

5. Application to high-temperature susceptibility of Rb,CrC14 

The ionic ferromagnet Rb2CrC14 (T ,  = 52 K) adopts a K2NiF,-type crystal structure in 
which Cr2+ atoms lie on a square lattice in well separated layers. The Cr-Cr exchange is 
at least 99% confined to near neighbours and of the isotropic Heisenberg mechanism 
(Hutchings et a1 1981, Fyne 1984), withJ/kB = 7.5 K. The dominantly planar single-ion 
anisotropy (D/kB = 1 K) is not expected to affect the paramagnetic susceptibility above 
about 80 K. 

The exchange constant J was accurately determined as 7.56(19)kB at about 4.2 K 
from spin-wave measurements (Hutchingsetall981). However, afit of the paramagnetic 
susceptibility between about 100 K and room temperature to the high-temperature series 
expansion for the two-dimensional Heisenberg square-lattice ferromagnet (Crama 1980) 
gave the lower value of about 6.45 K. This suggests that the exchange constant J should 
be regarded as temperature dependent. 

Following equation (18), J may be written as J o  exp( -A(x)). For a Cr2+-Cl bond, 
A = 3.38 X lolo m-l (Zaspel and Drumheller 1977). In the classical high-temperature 
region, (x) = KT where K is a constant (Kittel 1976). For Rb2CrC14 it is possible to 
calculate approximately the thermal expansion from the lattice constants measured by 
Janke et a1 (1983) at 77 and 293 K, which gives K = 2.9 x mK-'. Therefore the 
predicted temperature dependence of J for Rb2CrC14 is given by 

J = J o  exp( -AKT) = JA exp( - PT)  (37) 
with P = 9.8 x 

Cornelius et a1 (1986) have tabulated the experimental zero-field susceptibility of 
Rb2CrC14 between about 50 and about 160 K. Down to at least 80 K, the susceptibility 
would be expected to be described by the high-temperature series expansion for the 2~ 
Heisenberg square lattice ferromagnet: 

K-', the temperature coefficient of J .  

x = ( K g 2 / T ) l f ( J / k B T )  -k q((J/kBT)l  
where K = ,uoL,u&S(S + 1)/3kBMR = 9.4266 x 10-6/MR m3 kg-' for S = 2: 

and M ,  is the relative molecular mass in kilograms. The coefficients a, up to n = 6 were 
calculated using the expressions given by Ishikawa and Oguchi (1971) and are listed in 
table 1. The small unknown term q was estimated by the extrapolation a,/an-l a l/n. 
Full details of the fitting procedure will be given in a forthcoming publication. 
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O 5 0  80 110 140 1; 
Temperature (K) 

Figure 1. Temperature dependence of the log- 
arithm of the exchange constant J of Rb2CrC14. 
At each temperature, J was calculated from the 
dataofCorneliusetal(1986) by fittingtotheseries 
expansion for the S = 2 quadratic layer ferro- 
magnet with g = 2. The straight line is the 
regression line of In(J) on T with gradient 
-9.0 X K-', intercept2.06andcoefficient of 
determination R2 = 0.7. The gradient of the line is 
the temperature coefficient P defined in equation 
(37). 

Figure 2. Fit of the susceptibility of Rb2CrC14 
(Cornelius et a1 1986) to the extrapolated high- 
temperature series expansion for the S = 2 quad- 
ratic layer Heisenberg ferromagnet (-), with 
temperature-dependent exchange constant 
(equation(37)).The bestfitbetween59and 160 K 
is illustrated, corresponding to J;/k,  = 7.927 K, 
g = 2.000 and P = -9.0 X K-I. 

An initial fit of (38) to the data in the temperature range 80-170 K, allowing J and g 
to vary, gave quite a good fit with J = 7.12 K and g = 2.00. With g fixed at 2.00, each 
data point was then fitted separately to give J as a function of temperature. The results 
indicated thatJ decreased with increasing temperature, as expected. Following equation 
(37), ln(J) wasplotted against Ttogive P ,  the temperature coefficient ofJas the gradient 
(figure 1). Although the points were scattered, the regression line of ln(J) on Thad a 
gradient of -9.0 x K-', and a correlation coefficient R of 0.84. The latter shows 
(Chatfield 1983) that ln(J) and Tare significantly correlated at the 95% confidence level, 
and that about 70% (R2)  of the variation in ln(J) with Tis accounted for by the linear 
formula. P estimated in this way (-9.0 X K-') was very close to that predicted 
(-9.8 X 10-4K-1) by considering the thermal expansion (see above). Such a close 
agreement was probably fortuitous but confirms the applicability of the analysis. Finally 
the data were refitted with g = 2.00, and a temperature-dependent J (equation (37)) 
with P = -9.8 x K-'. A very good fit (figure 2) was obtained down to 59 K, with 
Jh/k, = 7.927 K. JA hereis just aparameter and doesnot represent the zero-temperature 
value of J ,  since equation (37) is not valid at very low temperatures. J/kB in fact increases 
from 6.79 K at 159 K to 7.48 K at 60 K, a change of about 10% over 100 K. 

The prediction (36) for the high-temperature thermal expansion was also tested. An 
order-of-magnitude estimate of the bond strength A/kB was taken to be the melting 
temperature of RbzCrCl4 (824K (Siefert and Klatyk 1964)). Note that whilst in a 
binuclear complex A is equal to the bond dissociation energy, in an ionic crystal it is the 
energy required to break a bond without infinite separation of the ions, and so is in 
general a smaller quantity. ( x )  was calculated to be kB/2AA = 1.8 X m K-', in 
reasonable agreement to that observed (2.9 X m K-l). It is interesting to note 
that the classical expression 3kB/4AA (see above) would have given a better estimate 
(2.8 x m K-'). 
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Finally, assuming CrCI4 oscillators (m = 3.2 x kg), equation (33) was used to 
extrapolate J( T )  to 0 K, givingJo ‘-. 7.6 K, in very good agreement with the estimate of 
Hutchings er a1 (1981) of 7.6(2) K. 

6. Conclusions 

In general the isotropic exchange constant J is temperature dependent as a result of the 
thermal expansion of the lattice, with thermal fluctuations in the internuclear distance 
contributing negligibly. In real compounds, J may vary by typically 30% between liquid- 
helium temperature and room temperature, and so it is essential to correct experimental 
data for this effect. This is particularly true of susceptibility versus temperature data, 
which is commonly used to derive exchange constants. Three possible corrections may 
be considered. If thermal expansion data are available, (17) should be used, especially 
in systems for which the thermal expansion is not a simple function of temperature. If 
such data are not available, at high temperatures the thermal expansion may be assumed 
to vary linearly with temperature, and (36) may be used in conjunction with (17); at 
lower temperatures the full expression (33) should be used. These corrections involve 
one parameter (A), two parameters (A and A )  and three parameters (A, A and m), 
respectively, and so wherever possible the first is to be preferred. The corrections are 
most directly applicable to compounds in which the dominant exchange interaction is 
between nearest neighbours and isotropic. 

Evidence for the variation in J with temperature was found in the high-temperature 
susceptibility of the ionic ferromagnet Rb2CrC14. A temperature variation in J was 
similarly observed in the susceptibility of RbMnF3 (De Jongh and Breed 1974) and 
tentatively ascribed to lattice expansion. In general, however, in order to derive the 
temperature dependence of J from susceptibility measurements, one must know the 
spin Hamiltonian, so as to be sure that a particular series expansion applies. 

Appendix. Justification of the approximation used to derive equation (14) 

To derive equation (13), terms of order two or greater in the expansion of the Laguerre 
polynomial L : ( - Y )  are dropped. This is justifiable if successive terms Tk diminish 
rapidly with increasing k. In general the ratio of successive terms is, from (9), 

(1 6 k s n). 

The right-hand side of (Al) is maximum fork = 1, and so the required condition is 

Y(n  - 1)/4 1 

or 

Yn 4 1 

for all significant n,  as stated in the text. ‘Significant n’ here refers to states with an 
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appreciable Boltzmann factorexp( -nfiW/kBT) (see equation (12)), and so it is necessary 
to prove that 

Yn exp(-nho/kBT) Q 1. (A31 
It is easily shown by differentiating with respect to n that the maximum value of this 
function is 

YkB T/hwe (e = 2.718. . .) (A41 
in which case, since ho = kBT to an order-of-magnitude approximation, the original 
assertion (A2) is true simply if Y Q 1, with Y = A2h/2mo (see text). Assuming typical 
values (A = 4 x lo1' m, kB = 1.38 x kg 
and o = 1013 s-I), an approximate value of Y is about 0.03, which is indeed much less 
than unity. The assumption Y Q 1 also underlies equations (16) and (17). 

J K-', h = 1.05 x J s, m = 3 x 
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